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The well-known energy dissipation anomaly in the inviscid limit, related to velocity
singularities according to Onsager, still needs to be demonstrated by numerical
experiments. The present work contributes to this topic through high-resolution numerical
simulations of the inviscid three-dimensional Taylor—Green vortex problem using a novel
high-order discontinuous Galerkin discretisation approach for the incompressible Euler
equations. The main methodological ingredient is the use of a discretisation scheme
with inbuilt dissipation mechanisms, as opposed to discretely energy-conserving schemes,
which — by construction — rule out the occurrence of anomalous dissipation. We investigate
effective spatial resolution up to 81923 (defined based on the 27w-periodic box) and make
the interesting phenomenological observation that the kinetic energy evolution does not
tend towards exact energy conservation for increasing spatial resolution of the numerical
scheme, but that the sequence of discrete solutions seemingly converges to a solution
with non-zero kinetic energy dissipation rate. Taking the fine-resolution simulation as a

reference, we measure grid-convergence with a relative L>-error of 0.27 % for the temporal
evolution of the kinetic energy and 3.52 % for the kinetic energy dissipation rate against
the dissipative fine-resolution simulation. The present work raises the question of whether
such results can be seen as a numerical confirmation of the famous energy dissipation
anomaly. Due to the relation between anomalous energy dissipation and the occurrence
of singularities for the incompressible Euler equations according to Onsager’s conjecture,
we elaborate on an indirect approach for the identification of finite-time singularities that
relies on energy arguments.
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1. Motivation

Singularities play a key role in fluid mechanics (Eggers 2018). While singularities in the
form of shocks are well understood for the compressible Euler equations and the inviscid
Burgers equation (Burgers 1948) as a simplified model, the occurrence of singularities that
develop in finite time is discussed controversially for the three-dimensional incompressible
Euler equations. The occurrence of singularities is strongly related to anomalous
dissipation of kinetic energy in three-dimensional incompressible Euler flows, according
to the pioneering work of Onsager (1949), which is well documented in review articles
(Eyink & Sreenivasan 2006; Eyink 2008) and in the recent essay by Dubrulle (2019).
Due to the relation between singularities and dissipation, we distinguish between (i) a
direct approach to identify finite-time singularities for incompressible Euler flows, e.g.
by showing that the vorticity blows up in finite time through different methods (e.g. an
analysis of the kind ||w|co ~ (£x — )77 according to the Beale—-Kato—Majda theorem
(Beale, Kato & Majda 1984) trying to identify #, and y from numerical results), and
(ii) an indirect approach providing indications of finite-time singularities by observing an
‘anomalous’ dissipative behaviour in the kinetic energy evolution. While most approaches
in the literature can be identified as belonging to the first category, the present work focuses
on a technique related to the second category. As explained below, this indirect approach is
rather new or unexplored due to certain subtleties with respect to numerical discretisation
schemes. To complement these results, we additionally show numerical results related
to the direct identification approach, such as the temporal evolution of the maximum
vorticity ||@||s and the enstrophy £.

1.1. State of the art and limitations in tracing finite-time singularities

A strategy to identify potential singularities directly is that of time series expansions
(Taylor & Green 1937; Morf, Orszag & Frisch 1980; Brachet et al. 1983; Pelz & Gulak
1997), but it has been found that numerical inaccuracies prevent a definite answer
when using this technique. Numerical investigations by means of partial differential
equation (PDE) solvers have therefore played the most dominant role in the exploration
of finite-time singularities, as detailed below.

A (difficulty in identifying singularities with the direct approach by numerical
simulations is the inherent conflict that arbitrarily small structures cannot be resolved with
a numerical simulation of finite resolution, which renders this problem one of the most
challenging topics in computational fluid dynamics. Much work has been done in this
field. In the 1980s and 1990s, several early works on direct numerical simulation of both
inviscid and high-Reynolds-number viscous incompressible flows reported indications of
finite-time singularities for the incompressible Euler equations (Brachet er al. 1983; Kerr
& Hussain 1989; Brachet et al. 1992; Kerr 1993; Boratav & Pelz 1994). Symmetry in
the initial conditions plays an important role, as specifically mentioned and addressed in
some works (Boratav & Pelz 1994; Pelz & Gulak 1997; Pelz 2001), raising the question of
whether singularities are possible for problems that are not perfectly symmetric. However,
these works do not allow a definite answer to the question of finite-time singularities;
see also the review articles on this topic (Gibbon 2008; Hou & Li 2008). One of the main
reasons why the results of these studies have been inconclusive is that the spatial resolution
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has been limited due to the computational power and computational approaches available
at the time. Numerical results shown in Hou & Li (2008) suggest that dynamic depletion
of vortex-stretching could be a mechanism that prevents a finite-time blowup, but the same
authors report evidence for a finite-time singularity for a different flow configuration with
solid boundaries in a later work (Luo & Hou 2014).

In terms of the flow configuration being studied, numerical investigations on finite-time
singularities can be categorised as follows. The Taylor—Green vortex has been analysed
in Brachet er al. (1983), Brachet et al. (1992), Brachet (1991), Shu et al. (2005),
Cichowlas & Brachet (2005) and Bustamante & Brachet (2012), and for a regularised
problem considering the Euler—Voigt equations in Larios ez al. (2018); the high-symmetry
Kida—Pelz initial condition in Hou & Li (2008), Cichowlas & Brachet (2005) and Grafke
et al. (2008); colliding Lamb dipoles in Orlandi, Pirozzoli & Carnevale (2012); and other
perturbed cylindrical vortex tubes in Kerr & Hussain (1989), Kerr (1993), Hou & Li
(2008), Grauer, Marliani & Germaschewski (1998) and Kerr (2013). Most studies use
spectral methods as discretisation schemes.

For these direct numerical simulations, common approaches to trace singularities are
monitoring the maximum vorticity ||@| .o over time (see the Beale—Kato—Majda theorem
(Beale et al. 1984)) and the ‘analyticity strip’ method (see Sulem, Sulem & Frisch
1983), which aims to capture the smallest scales of the flow. The width of the analyticity
strip §(¢), obtained from fitting the energy spectrum to E(k, t) = C(Hk—"® exp(—2ké(1)),
is monitored over time for successively finer spatial resolutions up to a resolution for
which extrapolations of §(¢) allow one to conclude whether §(¢) reaches O in finite time
(finite-time singularity) or decreases only exponentially in time (regularity at all times).

Numerical results for the three-dimensional inviscid Taylor—Green vortex shown in
Brachet et al. (1983) and Cichowlas & Brachet (2005) indicate only an exponential decay,
but this might be due to the limited spatial resolution and also to the fact that only
small times of the Taylor—Green vortex flow have been considered, so that a finite-time
singularity cannot be excluded by these results. In a later work by Bustamante & Brachet
(2012), a change in regime indicating potentially faster-than-exponential decay is reported,
and the results are ‘not inconsistent with the occurrence of a singularity’, but again
resolutions higher than the maximum one of 4096 would be required for definite answers.
In Cichowlas & Brachet (2005) it is estimated that conclusions regarding finite-time
singularities using the analyticity strip method would require spatial resolutions of (16 k)3
to (32k)3 for the Kida—Pelz initial data. A recent study by Campolina & Mailybaev
(2018) suggests that the resolution available via classical direct numerical simulation is
not sufficient to investigate blowup.

The development of pancake-like structures with exponentially growing vorticity
during the early development of turbulence from smooth initial data is studied in
Agafontsev, Kuznetsov & Mailybaev (2015). In Kerr (2013), a new kind of analysis
based on rescaled vorticity moments is proposed (studying anti-parallel vortex tubes),
and only double-exponential growth in vorticity is observed, as opposed to the singular
behaviour suspected in a previous work by Kerr (1993). A model describing a cascade of
transformations between vortex filaments and sheets potentially explaining the mechanism
of singularity formation in the Euler equations is proposed in Brenner, Hormoz & Pumir
(2016). Another model has been described recently in Moffatt (2019). In McKeown
et al. (2018), an iterative cascade of instabilities for head-on collisions of vortex rings
is investigated both experimentally and numerically.
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1.2. Energy dissipation anomaly

We now focus on the evolution of kinetic energy in incompressible Euler flows. Of
particular interest is the question of whether inviscid flows are able to dissipate energy,
and if so, by which mechanism such a behaviour can be explained, given that no viscous
effects are present. The kinetic energy dissipation equation — valid for incompressible
viscous (v > 0) flows with continuously differentiable solution on a domain with periodic
boundaries — reads (Onsager 1949; Eyink & Sreenivasan 2006)

JdE(t, v) _
ar

which implies conservation of energy in the inviscid limit v = 0 provided that the solution
is sufficiently regular. However, from phenomenological descriptions of turbulence, there
is empirical evidence that the dissipation rate does not tend to zero in the limit Re — o0
or v — 0 but takes a positive value independent of v, which is known as the dissipation
anomaly or the zeroth law of turbulence (Eyink 2008; Dubrulle 2019). As noted in Eyink
(2008), this was first observed by Taylor (1935), and also Kolmogorov’s similarity theory
of turbulence (Kolmogorov 1991) is based on the assumption of a non-vanishing energy
dissipation rate in the inviscid limit. Numerical evidence that the dissipation rate is
independent of v for large Re is for example given in Sreenivasan (1998), Kaneda et al.
(2003) and Orlandi et al. (2012), and experimental evidence for example in Pearson,
Krogstad & van de Water (2002) and Dubrulle (2019). Under certain regularity or
smoothness assumptions (existence of a strong L’ limit; we refer to Duchon & Robert
(2000), Drivas & Nguyen (2019) and Drivas & Eyink (2019) for a precise discussion), weak
Euler solutions are the v — 0 limit of Leray—Hopf weak solutions #" of the Navier—Stokes
equations, so that the dissipation rate in the inviscid limit equals the viscous dissipation
rate in the limit v — 0:
0E,—o(?) dE(t, v)

= lim = lim —vf Vu' :Vu'd2 = —-D() <0, (1.2)
at v—>0 ot v—0 Q

—/ vVu' 1 Vu' ds2, (1.1)
7,

where anomalous energy dissipation means that D(#) > 0 for some (or all) 7 > .. (As a
consequence, the enstrophy is inversely proportional to the viscosity for large Reynolds
numbers in the case of anomalous dissipation with D(¢) > 0.) In general, weak Euler
solutions may be neither unique nor the zero-viscosity limit of weak Navier—Stokes
solutions, which might themselves be non-unique (Isett 2017; Buckmaster & Vicol 2019,
2020; Buckmaster et al. 2021; Daneri, Runa & Székelyhidi 2021). In this sense, we note
that the first equality in (1.2) is a conditional one. Let us also refer to Brenier, De Lellis &
Székelyhidi (2011) and Wiedemann (2017) regarding the topic of weak—strong uniqueness
of Euler solutions.

The above argument already indicates that the theory explaining dissipation of energy
in the absence of viscosity is related to the spatial regularity of the solution. According
to Onsager (1949), energy dissipation in three-dimensional incompressible flows can take
place in the absence of viscosity through the formation of singularities, with the cascade
from large to (arbitrarily) small scales taking place in finite time; see also Eyink &
Sreenivasan (2006). (Hence, the mechanism explaining the occurrence of kinetic energy
dissipation in the limit v — 0 is that the velocity gradient might tend to infinity in this
limit. Specifically, Onsager (1949) wrote: ‘In the absence of viscosity, the standard proof
of the conservation of energy does not apply, because the velocity field does not remain
differentiable!” Interestingly, Onsager did not consider the energy-dissipating behaviour
of inviscid flows (‘ideal turbulence’) an anomalous behaviour but rather a matter of fact.)
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According to Onsager’s conjecture, dissipation of energy may occur if the velocity is
Holder continuous with exponent <1/3 (while Onsager’s assertion says that energy is
conserved for exponents > 1/3; see Eyink (1994), Constantin, Weinan & Titi (1994),
Duchon & Robert (2000) and Cheskidov ef al. (2008) for proofs). For mathematical
literature dealing with proofs of Onsager’s conjecture we refer to De Lellis & Székelyhidi
(2013), De Lellis & Székelyhidi (2014), Buckmaster, De Lellis & Székelyhidi (2016),
Buckmaster et al. (2018), Isett (2018) and references therein, where dissipative weak
Euler solutions up to Onsager’s critical regularity have been constructed using convex
integration techniques. New insights from these works thus confirm that the Holder
exponent of 1/3 is indeed the critical one in terms of energy dissipation. As noted in
Dubrulle (2019), the original Kolmogorov cascade picture implies irregularities of the
velocity field (at least locally) with Holder exponent < 1/3, but it was Onsager who
established the link between energy dissipation and irregularities of the velocity field for
the Euler equations.

The above considerations might explain why this phenomenon is known as the ‘kinetic
energy dissipation anomaly’; an alternative term used e.g. in Dubrulle (2019) is ‘inertial
dissipation’ (as opposed to viscous dissipation). The one-dimensional inviscid Burgers
equation (Burgers 1948) with formation of a shock and the associated dissipation of
energy serves as a prominent and well-understood example; it is discussed, for example,
in Sulem ef al. (1983) in the context of finite-time singularities and in Dubrulle (2019)
in the context of inertial energy dissipation. In Josserand, Pomeau & Rica (2020),
the phenomenon of energy dissipation through finite-time singularities is illustrated for
another one-dimensional model problem, the nonlinear Schrédinger equation. For the
two-dimensional incompressible Euler equations, it is known that singularities cannot
develop in finite time from smooth initial data (Eyink & Sreenivasan 2006). Regarding
three-dimensional turbulent flows, Onsager’s conjecture appears to be widely accepted
by now, with the occurrence of singularities representing a building block of modern
understandings of turbulence (Dubrulle 2019).

1.3. Interplay between physics and numerics

The present work focuses on the numerical solution of turbulent flows and particularly the
inviscid limit. From a closer look at numerical simulations of the inviscid Taylor—Green
vortex, it can be observed that many of these simulations have been performed mainly for
small times up to ¢t & 5 (up to t = 4 in Brachet et al. 1983, Brachet et al. 1992, Cichowlas
& Brachet 2005 and Bustamante & Brachet 2012, and up to ¢ < 6 in Shu et al. 2005 and
Chapelier, De La Llave Plata & Renac 2012), but not beyond the time at which finite-time
singularities have been suspected, especially not up to the time at which the transition to a
fully turbulent state takes place, with maximum kinetic energy dissipation rate at time ¢ =
8-9 (expected from high-Reynolds-number viscous simulations (see Brachet et al. 1983))
and subsequent decaying turbulence. As mentioned by some of these works, one reason
for this is that the results for a specific resolution are no longer reliable at later times once
the flow becomes under-resolved (note that the spatial resolution is severely limited by
computational resources, even with the large supercomputers available today) . The key
aspect, however, is that numerical simulations of the incompressible Euler equations are
very challenging in terms of energy stability and numerical blowup of the discretisation
scheme. Often, a lack of robustness of the numerical discretisation scheme is reported for
this challenging inviscid Taylor—Green vortex problem (see for example Chapelier et al.
2012 and Winters et al. 2018).
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The lack of understanding of what is to be expected in terms of kinetic energy
dissipation from a physical perspective (the energy dissipation anomaly discussed in
§ 1.2) is manifested in an uncertainty regarding the optimal design of discretisation
schemes from a numerical perspective. In Moura et al. (2017b), Moura et al. (2017a)
and Piatkowski (2019), it is argued that a fundamentally different behaviour in terms
of energy dissipation and time reversibility is expected between viscous flows in the
limit Re — oo and inviscid flows at Re = oo. Especially in numerical studies, it is often
assumed that energy conservation holds for an exact solution of the Euler equations
not only in two space dimensions but also in three space dimensions; see for example
Shu et al. (2005), Bustamante & Brachet (2012), Grauer er al. (1998), Chapelier
et al. (2012), Winters et al. (2018), Schroeder (2019), Krais et al. (2020) and the
recent review article by Coppola, Capuano & de Luca (2019), to mention just a few.
Numerical schemes that are exactly energy-conserving can indeed be constructed and
have the advantage that nonlinear blowup of the numerical discretisation scheme can be
avoided in the challenging inviscid limit. For these reasons, energy-conserving schemes
appear to be the current gold standard for the simulation of this type of problem.
Inviscid Taylor—Green vortex simulations performed in Schroeder (2019) using exactly
divergence-free, energy-conserving discretisation methods result in an exact conservation
of energy, and the results are considered superior to those of simulations with upwind
fluxes that show a dissipative behaviour.

However, the use of energy-conserving schemes is accompanied by a major limitation,
namely that it excludes — by construction — the occurrence of anomalous energy
dissipation. Onsager’s conjecture forces one to rethink whether it is really a desirable
quality criterion that a numerical method preserves the kinetic energy exactly in
the inviscid limit v = 0. If Onsager’s hypothesis is true, there is an inconsistency
between the physical dissipation behaviour and the numerical dissipation behaviour of
energy-conserving discretisation methods. Thus, energy-conserving numerical methods
would result in an O(1) error in the case of inviscid flows with anomalous/inertial energy
dissipation. Since no energy can leave the system for such a discretisation scheme, energy
accumulates in small scales, a well-known phenomenon called thermalisation. In terms of
the kinetic energy spectrum, an energy-conserving numerical scheme typically leads to an
unphysical equipartitioning of energy when simulating beyond the time of the finite-time
singularity (Orlandi 2009; Ray et al. 2011; Orlandi et al. 2012). The energy-conserving
results of Schroeder (2019) indeed show such a behaviour. One may conclude that the
application of energy-conserving numerical methods is only reasonable for times ¢ <
before a potential singularity forms, since anomalous dissipation might occur afterwards.
Further, one may formulate that a numerical scheme must contain mechanisms of
dissipation as a minimal requirement in order to address the topic of anomalous energy
dissipation. To describe discretisation schemes suitable for investigating anomalous
dissipation more precisely, we consider it a prerequisite to use consistent and stable
discretisation schemes whose dissipation mechanisms are coupled to under-resolution
effects in the numerical approximation of the solution, i.e. the dissipation mechanisms
act on the finest resolved scales and shift to smaller scales under mesh refinement. As
we discuss in more detail below, it appears to be unclear mathematically whether such a
scheme is able to find a dissipative weak solution of the Euler equations.

By studying Galerkin-truncated, energy-conserving simulations of the one-dimensional
Burgers equation, the work of Ray et al. (2011) describes an interesting phenomenon,
called ‘tyger phenomenon’ in that work, where short-wavelength oscillations occur out of
the blue in the presence of singularities, that finally lead to thermalisation. The importance
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of numerical dissipation to avoid the effect of thermalisation for this one-dimensional
Burgers problem is emphasised in a recent study by Murugan et al. (2020), which can
therefore be seen in close analogy to the present work focusing on three-dimensional
Euler problems.

The situation is less complicated for two-dimensional Euler flows that are
non-dissipative. In that case, it can be expected that the kinetic energy dissipation rate
converges to zero under mesh refinement for a consistent and energy-stable discretisation
scheme, and that there is per se no conflict with physics if an energy-conserving scheme
is applied.

1.4. Anindirect approach to identify finite-time singularities through energy
considerations

The indirect approach to identify finite-time singularities relies on the physical intuition
that the appearance of anomalous energy dissipation in free decay from smooth initial data
requires a finite-time singularity. The basic idea is to capture the temporal evolution of the
kinetic energy by a numerical method with appropriate inbuilt dissipation mechanisms
as described in § 1.3. If grid-convergence to a dissipative solution with non-zero kinetic
energy dissipation rate can be demonstrated numerically, indirect evidence of a finite-time
singularity is provided by the following line of argument:

(1) Assume convergence of a sequence of numerical solutions to a dissipative weak
Euler solution for # — 0.
(i) Weak—strong uniqueness holds for dissipative weak Euler solutions (Lions 1996;
Brenier et al. 2011; Wiedemann 2017).
(ii1) Supposing that an energy dissipation anomaly with non-zero kinetic energy
dissipation rate is observed, it follows from items (i) and (ii) that a strong solution
cannot exist but must have become singular.

The conclusion in item (iii) is based on an indirect proof. Assume that a strong solution
exists. This strong solution is energy-conserving. By weak—strong uniqueness, the weak
solution must be identical and, therefore, energy-conserving. By contradiction it follows
that a strong solution cannot exist.

Note that assumption (i) could be weakened. Rather than (i), only convergence to
a dissipative generalised weak solution in the sense of Lions (1996) or DiPerna &
Majda (1987) is required. Interestingly, this weaker assumption might be provable for the
limit 2~ — O, as it has in fact been proven for the limit v — 0O (at least along subsequences).
Since the existence of generalised weak Euler solutions as limits along subsequences

relies on very general compactness arguments that require only L? (kinetic energy)
bounds for both the Lions and DiPerna & Majda theories, a proof for the limit 7 — 0
for a discontinuous Galerkin (DG) Euler discretisation scheme as used here might be
conceivable in analogy to what has been shown for the limit v — 0. To the best of our
knowledge, such a proof is still outstanding.

Let us note that a similar idea to identify singularities experimentally based on energy
arguments has been used by Saw et al. (2016) and Kuzzay et al. (2017), who calculate
the inertial dissipation at scale / from particle image velocimetry measurements. To the
best of the authors’ knowledge, the present study makes the first attempt to use energy
arguments for singularity detection in numerical simulations of three-dimensional Euler
flows.
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Figure 1. Temporal evolution of kinetic energy (a) and kinetic energy dissipation rate (b) for
the three-dimensional Taylor—Green vortex problem for increasing Reynolds numbers of Re =
100, 200, 400, 800, 1600, 3200, co. For each Re, results are shown for two mesh resolutions (fine mesh
as solid line, coarse mesh as dashed-dotted line). The effective resolutions (see §3 for a definition)
are 643, 1283 for Re = 100, 1283, 2563 for Re = 200, 400, 256, 5123 for Re = 800, 1024, 20483 for Re =
1600, 20483, 40963 for Re = 3200, and 40963, 81923 for Re = co. The results suggest that the kinetic energy
reduces to a value as low as approximately 0.02 at time ¢ = 20 for large Reynolds numbers, and that a similar
amount of energy dissipation also takes place in the inviscid limit.

From numerical simulations of viscous problems at finite Reynolds number, there
are indications that the zeroth law of turbulence holds for the Taylor—Green vortex
problem. Numerical results for the kinetic energy dissipation rate for increasing Reynolds
numbers up to Re = 3000 in Brachet et al. (1983) and additional results for higher
Reynolds numbers of Re = 5000 in Brachet (1991), Re = 10000 in Arndt et al. (2020)
and Re = 20000 in Lamballais e al. (2019) strongly suggest that the function D(#) does
not tend to zero in the limit v — 0. This argument is summarised in figure 1, which
shows results for viscous and inviscid simulations of the Taylor—Green vortex obtained
with the present discretisation approach. For each Reynolds number, results are shown
for two resolutions of the numerical discretisation approach to judge whether the results
are mesh-independent. We achieve grid-converged results for all finite Reynolds numbers
shown in figure 1. In the inviscid limit, the temporal evolution of the kinetic energy
is almost indistinguishable for the two finest resolutions, while small differences in the
energy dissipation rate are still visible between the two resolutions 4096° and 81923
at later times around the dissipation maximum and beyond. However, the onset of
dissipation around ¢ & 6 appears to be grid-converged also for this challenging inviscid
simulation. These results are consistent with grid-convergence to a dissipative solution
of the incompressible Euler equations for the three-dimensional Taylor—Green problem.
Figure 1 therefore summarises the main result of the present work.

While the accumulation of energy in small scales in case of energy-preserving schemes
is unphysical, it can be exploited under certain circumstances in order to gain insights
into the physical dissipation behaviour. In Cichowlas et al. (2005), an effective dissipation
is estimated from the small-scale thermalised energy of energy-conserving, spectrally
truncated Euler simulations, and it is found that the large-scale Euler dynamics are similar
to high-Reynolds-number Navier—Stokes dynamics. Although the underlying numerical
methods in that work are different from those of the present study (the energy dissipation
rate is derived by a postprocessing of results in Cichowlas et al. (2005), whereas it
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is simulated directly in the present work), there are interesting parallels. The onset of
dissipation around ¢ = 5-6 and the dissipation maximum around t = 8-9 appear to be
very similar to the present results, so that the two studies can be seen to complement and
verify each other. From this perspective, the study by Cichowlas ef al. (2005) supports the
main conclusions of our work.

Instead of considering a two-parameter limit problem 2 — 0,v — 0 as illustrated
in figure 1, the remainder of this work focuses on the one-parameter limit 4 — O for
the inviscid limit v = 0. Let us explain this decision in more detail. A two-parameter
study 4 — 0,v — 0 would technically not be realisable due to the large amount of
computational costs required for such simulations: already for moderate Reynolds numbers

of Re = O(10%), as considered for example in Arndt et al. (2020) and Lamballais
et al. (2019), the spatial resolutions required for grid-convergence are comparable to
the highest-resolution simulations that we are able to realise in the present work for the
inviscid limit. These highest-resolution simulations require computational costs of tens
of millions of CPUh in the present study, despite the fact that we use a highly efficient
implementation that is well optimised for the hardware under consideration. With the goal
of realising spatial resolutions as high as those shown in the present study, computational
costs would allow us to consider only a single finite Reynolds number beyond what is
shown in figure 1, which explains why we immediately address the inviscid limit v = 0.

1.5. Outline

The rest of this article is organised as follows. We describe the mathematical model
of the incompressible Navier—Stokes or Euler equations and its numerical discretisation
in space and time in §2. Section 3 shows results for the one-dimensional Burgers
equation with formation of a shock, a two-dimensional shear layer problem with a
numerical investigation of the kinetic energy dissipation in the limit v — 0, and finally
the three-dimensional Taylor—Green vortex problem that has been suspected to exhibit
finite-time singularities in the inviscid limit. In §4, we summarise our results, draw
conclusions and raise questions based on the present observations.

2. Numerical methods

We seek numerical solutions to the incompressible Euler equations solved on a
domain 2 ¢ R? ind = 2, 3 space dimensions. These have their origin in the equations for
viscous fluids with kinematic viscosity v described by the incompressible Navier—Stokes
equations

ou

E—I—V-(u@u)—vvzu—i—Vp:O, 2.1)

V.eu=0, 2.2)

where u denotes the d-dimensional velocity vector and p the kinematic pressure. The Euler
equations are recovered by setting v = 0. This system of partial differential equations does
not extend to d = 1 in a meaningful way, since the incompressibility constraint du/dx = 0
would imply u# = const. (However, the one-dimensional Burgers equation serves as a
simplified mathematical model for more complex higher-dimensional problems. While
results for the inviscid Burgers equation are presented in § 3, this section deals with
discretisations of the incompressible Navier—Stokes equations for d = 2, 3.) Let us note
that the temporal and spatial discretisation schemes discussed below are generic and hold
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for both two- and three-dimensional problems, but that there are major differences in
terms of the flow physics and the mechanisms that make up the nature of turbulence,
such as the energy transfer to small scales according to a turbulence cascade in three
dimensions (Onsager 1949). This fundamentally different behaviour is attributed to the
vortex-stretching term in the vorticity form of the Euler equations (Gibbon 2008),

Do v 2.3

Dr = (@ V)u, (2.3)
where the vortex-stretching term on the right-hand side vanishes in two dimensions since
the vorticity w is perpendicular to the velocity u in that case.

The following two subsections detail the temporal and spatial discretisation of the
incompressible Navier—Stokes equations (2.1) and (2.2). Discretisation in time is based
on projection methods that solve for velocity and pressure unknowns in different
sub-steps of a time step. Discretisation in space is based on high-order DG methods
with suitable stabilisation techniques that render the method robust for under-resolved,
high-Reynolds-number flows.

2.1. Temporal discretisation — high-order projection method

Discretisation in time is based on projection methods which aim at obtaining
computationally efficient incompressible flow solvers by decoupling the velocity and
pressure unknowns (Karniadakis & Sherwin 2005). A convection—diffusion-type problem
is solved for the velocity and a Poisson equation for the pressure, with a subsequent
projection of the velocity onto the space of solenoidal vector fields according to the
Helmbholtz decomposition. We use the high-order dual splitting scheme proposed in
Karniadakis, Israeli & Orszag (1991), which consists of the following four sub-steps:

J—1
Yo — Z“?"n_i J-1
i=0 n n—i n—i
= — . V e (U u . 24
A ; BIV - (W' @ u"T (2.4)
yn
vt =2 v.q, (2.5)
Aty
A At
u=i——-Vp"t (2.6)
Y0
n n
Y0 un+1 . vVZunJrl — V_Oi‘l’ 2.7)
Aty Aty

where n denotes the current time step, in which the equations are integrated from time ¢, to
time f,4+1 = t, + At,. The temporal discretisation is based on a backward differentiation

formula of order J with coefficients y(? and al.”, i=0,...,J— 1. In the first sub-step
(2.4), the convective term is treated explicitly in time by using a high-order extrapolation
scheme of order J with coefficients ,31.", i=0,...,J — 1. In the next two sub-steps, a

pressure Poisson equation (2.5) is solved and a divergence-free velocity is obtained in
the projection step (2.6). Finally, the viscous term is taken into account in the last sub-step
(2.7), which can be omitted in the case of the Euler equations, #"*! = &. The explicit
treatment of the convective term implies a restriction of the time step size according to the
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Courant-Friedrichs—Lewy (CFL) condition. For reasons of computational efficiency, we
use adaptive time stepping with variable time step sizes At,, readjusting the time step size
after each time step in such a way as to maximise the time step size and operate close to
the CFL stability limit. We introduce the CFL condition below since it also depends on the
spatial discretisation scheme. A second-order accurate time integration scheme with J = 2
is used in the present work.

2.2. Spatial discretisation — high-order discontinuous Galerkin method

A key element of the present study is the use of a novel high-order DG discretisation
for incompressible flows. This discretisation approach has been developed recently and
is documented in a series of publications (Fehn, Wall & Kronbichler 2017; Krank ef al.
2017; Fehn, Wall & Kronbichler 2018b; Fehn et al. 2019), with a focus on the stability
of projection methods in Fehn et al. (2017), and a focus on the stability and dissipation
characteristics of DG discretisations for under-resolved turbulence in Fehn et al. (2018b,
2019). Of particular importance are the inbuilt dissipation mechanisms of DG methods
acting on the finest resolved scales of the flow. In order to investigate the phenomenon
of anomalous energy dissipation, we consider it a prerequisite to use a discretisation
scheme that provides the flexibility to find both dissipative and non-dissipative solutions.
Let us point out that all simulations shown in this work are performed as direct
numerical simulations, i.e. without any form of explicit turbulence model or numerical
viscosity. More precisely, upwind-type numerical fluxes represent the main dissipation
mechanism of the present scheme; see also Ainsworth (2004) for a general dispersion
and dissipation analysis and distribution of dissipation among the resolved scales. Note
that the H(div)-stabilisation presented below also contributes with a certain amount of
dissipation. For reasons of brevity and to focus on the main aspects, we avoid technical
aspects related to the imposition of boundary conditions in the following, but refer to the
original publications.

We assume a computational domain §2;, = Ugjl 2. € RY consisting of conforming
quadrilateral or hexahedral elements £2,, e = 1, ..., No;. A common abstraction of finite
element methods is to define a mapping x¢(&) from a reference element 2, =10,11¢
with Cartesian coordinates & to element £2, in physical space with coordinates x,
and approximate the solution within each element by polynomials defined in reference
coordinates. Here, the numerical solution in d =2,3 is represented by a tensor
product of one-dimensional Lagrange polynomials with a Legendre—Gauss—Lobatto
point distribution, and is allowed to exhibit discontinuities between elements in
an L2-conforming sense. The spaces of shape functions are then given as

Vi = {up € [P @01 < un (x°(®)) 1o, = i, ®)lg, € Vi, = [Qu(2)1,
Ve=1,...,N.}, (2.8)

Vi = {pn € L*(21) : pp(x“ ()], = P8 g, € Vi . = Qu1(82.),
Ve=1,...,Ny}. (2.9)

Here, Qy denotes the space of tensor-product polynomials of degree k, and we highlight the
ambiguity in notation related to the spatial wavenumber £ in the context of energy spectra.
The polynomial degree of the velocity shape functions is k, while it is k — 1 for the pressure
for reasons of inf—sup stability. In this work, we only consider problems with Cartesian
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meshes so that the mapping x¢(&) is an affine transformation. At the interface between two
elements e~ and e*, the numerical solution is not unique, and we use the superscripts —
and + to denote the solution from the two sides of an interface. When referring to the
element e, we denote interior information by —, and the outward-pointing unit normal
vector by n = n™. To define numerical fluxes, we introduce the average operator {{u}} =
(u” +u")/2 and the jump operator [u]] = u~ ® n~ +u" ® n, where n = —n~. We
apply the usual abbreviations of integrals, (v, u) o, = f 2 VOu ds2 for volume integrals
and (v, u)y0, = fa o,V ©udI for surface integrals with © denoting an inner product.

We now state the weak formulation for all sub-steps of the projection scheme. We obtain

A

the numerical solutions &y, iy, Uy, uZH eV} and pZH € Vf by testing with all test

functions v, € V) ,, qp € er forallelementse =1, ..., N,.
In the first step, the convective term is discretised by the local Lax—Friedrichs flux

2~ J—1 n, n—i J—1
Yoln — 2 i—o o'y n < n—i
vy, =— S =\ Vo, (un @ up) )
( Aty Z hi 2.
2. i=0

A n—i
+ (vh, <{{uh Q upl} + Eﬂ”h]]) . n) ) , (2.10)
082,

where the stabilisation parameter is chosen as A = max(|u;, - n|, |u,JZr - n|). The pressure
Poisson operator is discretised by the symmetric interior penalty Galerkin (SIPG) method

1
(Van, Vpithe, — (qul, EIIPZH]]) — (gn VP - mag,
082,
yl’l
+ (qn, TP} - m)o, = — A‘; (—(Van, i) o, + (qn, (@)} - n)sg,), (211
n

where a central flux is used for the velocity divergence operator on the right-hand side of
the pressure Poisson equation. A central flux is also used for the pressure gradient term in
the projection step

2 R At
(v, i) o, = (v, i) g, — yn"(—(v cop, P e, + (on, () msg0,). (2.12)
0

The viscous term is also discretised by the SIPG method,

n A A A
(vh, Yo ﬁh) + (Vvh, vVﬁh) - (Vvh, K[[ilh]])
Aty 2 2, 2 382,
A 2 2
—\vn, v{{Vupl} - n + \ vn, vrllupl - n = | vp, u, | (2.13)
302, 982, Aty 2

while this step is skipped, &, = @, in the inviscid limit when solving the incompressible
Euler equations. In a final postprocessing step, consistent divergence and continuity
penalty terms are applied to weakly enforce the incompressibility constraint and normal
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continuity of the velocity field (Fehn et al. 2018b, 2021):

i |
(o, uf g, + (Vevp, oV - ul g, Aty

Y m)ag, Aty = (v, i) g, (2.14)

The above postprocessing step is specifically related to the type of spatial discretisation
used in this work, i.e. the L2-conforming DG method, and disappears in the continuous
case. It was found that the divergence and normal-continuity penalty terms are crucial
in terms of mass conservation and energy stability in order to obtain a method that is
robust for large Reynolds numbers and coarse spatial resolutions, and we refer to Fehn
et al. (2018b, 2019) for detailed numerical justification and validation of this approach.
In this context, we note that alternatives to this stabilised approach exist, e.g. by using
tailored finite element function spaces. For example, function spaces can be used that result
in an H(div)-conforming (normal-continuous) velocity field and that is divergence-free
in every point of the computational domain. The present L?-conforming approach does
not fulfil these two properties exactly, but in a weak finite element sense. Definitions
of the penalty parameters 7, Tp, T¢ are given in Fehn et al. (2018b), where the default
penalty factor ¢ = 1 is used in the present work unless specified otherwise. In terms of
the occurrence of finite-time singularities and anomalous energy dissipation, the present
work makes use of the argument that — due to the weighted residual formulation — the
present discretisation can be applied to problems which lack regularity and for which the
differential form of the equations is no longer an appropriate description. With respect to
the implementation of the method, integrals in the weak form are evaluated by means
of Gaussian quadrature, with consistent integration according to the 3/2 rule for the
nonlinear convective term (also known as polynomial dealiasing). Since we consider
uniform Cartesian meshes (with elements of size /4 in all coordinate directions) in the
present work, integrals are calculated exactly.

To obtain the size of the next time step within the adaptive time stepping scheme, we
use the following local CFL condition evaluated at all quadrature points g of element e:

. Cr h
At = min m . (2.15)
q.e

=N \ g KIS g
where we ensure stability of the time integration scheme by selecting a Courant
number Cr < Crr. Note that — due to the CFL condition — an increase in spatial
resolution by reducing & or increasing k automatically implies an increase in temporal
resolution through a reduced time step size.

The present incompressible flow solver is implemented in C++ and forms a core module
of the ExaDG (High-Order Discontinuous Galerkin for the Exa-Scale) software, which
is publicly available on github (see https://github.com/exadg/exadg). The ExaDG software
primarily makes use of the open-source finite element library deal.ll (Alzetta et al. 2018;
Arndt et al. 2021). The computational efficiency of the present discretisation methods
in terms of fast implementations and fast iterative solvers is discussed in Fehn, Wall &
Kronbichler (2018a), Fehn et al. (2020), Kronbichler & Kormann (2019) and Arndt et al.
(2020).

e
+ (vp -, TC(”h —u,

3. Results

This section presents numerical results for three test cases ind =1, d =2 and d =3
space dimensions. The one-dimensional problem is the well-known inviscid Burgers
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equation developing a singularity in finite time for appropriate initial conditions. The
two-dimensional example is a shear layer roll-up problem. The particular example used
for the d = 2 investigations is not of primary importance, as it is known theoretically
that regularity is expected for two-dimensional Euler flows when starting from regular
initial data. Instead, the aim of these one- and two-dimensional examples is to investigate
to what extent the numerical discretisation scheme is able to mimic physical behaviour
with potentially singular solutions. Having validated the numerical method for these
well-understood problems, we apply it to the three-dimensional inviscid Taylor—Green
problem, for which the physical understanding in terms of the occurrence of finite-time
singularities and the related aspect of anomalous energy dissipation is speculative at
present. As further preparation, we summarise the quantities of interest in the following
subsection.

3.1. Quantities of interest

Since turbulent flows in three space dimensions are our primary interest, we restrict
the discussion in this subsection to the three-dimensional case, implying extensions of
certain relations to one- and two-dimensional problems only where possible. Of primary
importance for the present study is the temporal evolution of the kinetic energy

E@) = %/;2 %u(x, 1) - u(x,t)ds2 (3.1)

and its dissipation rate dE/d¢. The kinetic energy is normalised by the volume Vo =
f o 1d$2 of the computational domain. The integrals are evaluated numerically by means
of Gaussian quadrature, with k£ + 1 quadrature points in each coordinate direction. The
time derivative used to obtain the dissipation rate is computed numerically from the
kinetic energy at discrete instants of time via a second-order finite difference formula
for variable time step sizes with first-order approximations at the end points. If anomalous
dissipation (dE/dt < 0) occurs, the temporal evolution of the enstrophy &,

E) = ! ! 1 - w(x, 1) ds2 3.2)
_%\/‘in(x’ 'wx,) N (

is expected to exhibit a singularity £ — oo in finite time. Integrals are computed by
Gaussian quadrature, which is exact down to round-off errors due to polynomial integrands
and Cartesian meshes. A related local quantity is the maximum vorticity

l@lloo (D), (3.3)

where we take the maximum over all quadrature points over all elements in the discrete
case and monitor its evolution over time, with a view to detecting potentially singular
behaviour in finite time. Although the maximum vorticity will remain finite for every
numerical simulation of finite resolution, a mesh refinement study may give hints about
the expected behaviour if the resolution is further increased. Finally, we consider kinetic
energy spectra by transformation into wavenumber space k (Cichowlas & Brachet 2005;
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Bustamante & Brachet 2012):

|l kll=k+Ak
/ lak, )]2dk
I

E(kt) = ~ tim LIk ~ Y L ipgr i, 12
VT2 ako Ak = e
g

k— % <Ilkll<k+3%

(34

where u(k, f) denotes the Fourier transform of the velocity, which only exists at discrete
wavenumber vectors k in case of a discrete Fourier transformation (DFT) obtained
from sampled data of a discrete velocity field. The solution is first interpolated onto N
equidistant points per element and per coordinate direction to which the discrete Fourier
transformation is applied, using the library FFTW (Frigo & Johnson 2005) in the present
work. (The number of sampling points is chosen as N = k + 1 in the present work, i.e.
equal to the number of nodal points of the DG discretisation, where k is the polynomial
degree of the shape functions and should not be confused with the wavenumber k
typically used in the context of energy spectra. The equidistant interpolation points all
lie within the element, away from the boundaries where the solution is discontinuous.
If interpolation points on the boundary are used, one typically takes the average of the
solutions from neighbouring elements.) Note that considering E(k, ) as a function of a
scalar wavenumber k as well as the summation over spheres of radius k introduces the
assumptions of homogeneity and isotropy. In case of anomalous energy dissipation, the
enstrophy is expected to become infinite. Hence, exploiting the relation £ (k, 1) = K2E(k, 1)
between the enstrophy and energy spectra and further assuming a power law behaviour for
the kinetic energy spectrum of the form E(k, ) = C(1)k~"", a singularity at time ¢ = t,
with £(t,) = fooo E(k, t,) dk = oo would correspond to a decay with slope n(t,) = 3 in
the energy spectrum; see also Orlandi (2009) and Orlandi er al. (2012). We use this
criterion as further validation of the results in case other quantities give hints of potentially
singular behaviour. Apart from that, energy spectra are typically investigated to assess
the well-known k~3/3 Kolmogorov spectrum for fully-developed, homogeneous isotropic
turbulence. We apply this property to investigate whether the numerical results match
expected physical behaviour obtained from classical cascade pictures in case of inviscid
flows and beyond the time of potential singularities, ¢ > t,.

3.2. One-dimensional inviscid Burgers equations

We begin by studying the one-dimensional inviscid Burgers equation (Burgers 1948)

au 3 u?

ot Tax2 T
as a simplified model for the incompressible Euler equations. It is well known that
this equation develops singularities in finite time; see for example Sulem ef al. (1983)
and Dubrulle (2019). Previous works demonstrate that the use of energy-conserving
discretisation schemes leads to thermalisation for this type of problem; see for example
Ray et al. (2011) and Murugan et al. (2020). It is therefore particularly interesting to
study the behaviour of a discretisation scheme for this simplified problem first. The spatial
discretisation is based on a DG scheme very similar to the one described in § 2 for the
two- and three-dimensional cases; i.e. the convective term is discretised with a local

932 A40-15

0, (3.5)


https://doi.org/10.1017/jfm.2021.1003

https://doi.org/10.1017/jfm.2021.1003 Published online by Cambridge University Press

N. Fehn, M. Kronbichler, P. Munch and W.A. Wall

(@) : o, (%, t=0) ()
1.0+ i\/\ﬁzb“‘i ——-uy (x,1=0.25) |
Vi uy (x,1=0.5)
051 Vi uy, (x, t=1.0)
= .- ——uy, (x, t=4.0)
= or
s i
0.5} ‘!
i
i
10} -
i
I
—1.0 —0.5 0 0.5 1.0 —1.0 —0.5 0 0.5 1.0
X

Figure 2. One-dimensional inviscid Burgers equations for two different initial solutions that form a singularity.
On the left, the initial condition is a sine function (a), while on the right it is a simple hat function that is
piecewise linear (b). The spatial resolution used for the computations corresponds to refinement level / = 6 and
polynomial degree k = 3, resulting in an effective resolution of 256!.

Lax—Friedrichs flux. Gaussian quadrature with a 3/2-overintegration rule is used as in
the higher-dimensional case, due to the quadratic nonlinearity of the convective term, but
we intentionally take no additional measure, such as limiting, filtering, or other Riemann
fluxes, to specifically address the jump that forms in the solution. We also emphasise that
no artificial viscosity approach is used to deal with the singularity. For time integration,
the classical explicit fourth-order Runge—Kutta method is used with a Courant number
of Cr =0.4.

Figure 2 shows the numerical solution u;(x) at various instants of time and the
formation of a shock. The problem is solved on the domain §2 = [—1, 1] with Dirichlet
boundary conditions prescribed at both boundary points of the one-dimensional domain.
An equidistant grid with 2! elements is used, where / denotes the level of refinement.
For polynomial approximations of degree k, the effective resolution becomes (k + 1)2.
For illustration, we select two different initial solutions: a sine function, uy(x, t = 0) =
—sin(mx), and a hat function, u,(x,t =0) = —2|x+0.5| + 1 for x < 0 and u,(x,t =
0) = 2|x — 0.5] — 1 for x > 0. Due to the chosen initial conditions with u > 0 for x < 0
and vice versa, the solution piles up in the middle of the domain and a singularity
(0u/dx — oo) forms at x = 0 in both cases. The oscillating behaviour of the numerical
solution around the singularity could be improved by the advanced discretisation
techniques mentioned above. From the results shown in figure 2 it is plausible that
the kinetic energy is conserved until the formation of the shock and that energy will
be dissipated at later times. For the hat function chosen as the initial condition, it is
straightforward to derive an analytical expression for the temporal evolution of the kinetic
energy as well as its dissipation rate, which is why we consider this setup in more detail in
the following. According to the method of characteristics it follows that the shock forms
at time £, = 0.5. From that time on, the solution can be written as

u(x, 1) = f () (x — sign(x)) , (3.6)

where sign(x) takes values of 1 depending on the sign of the argument. The temporal
evolution part f(¢), which describes the absolute value of u taken to the left and right of the
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Figure 3. One-dimensional inviscid Burgers equations with hat function as initial condition: temporal
evolution of kinetic energy (a) as well as dissipation rate (b) and convergence towards analytical profile for a
mesh refinement study with refinement levels / = 2, ..., 5 and polynomial degree k = 3, resulting in effective

resolutions of 161, ..., 1281,

origin of the coordinate system at x = 0, can be obtained from the following consideration:

ou(x, 1)
fa+dy =7 — —— de, =fO0A-f(d); (3.7)
X x=0"
——e ——— =u(x=07",1) dt
=f(t) =f(r) dr
i.e. the solution at x = 0™ at time ¢ + dr equals the solution at position —dx = —u(x =

07, #) dr at time . Separation of variables and integration yields the result f(#) = 1/(t +
t,). The kinetic energy E(t) = f o %u2 (x, t) dx is therefore given by

1 2
E@t) = f 1 %ﬁ(z) (x — sign(x))? dx = J% (3.8)

The kinetic energy dissipation rate is obtained by differentiation, which yields a (¢ +
t,) > decay for times ¢ > t,. The dissipation rate is Au’/12 when expressed in terms of
the jump Au of the solution, in agreement with the result in Dubrulle (2019), where it is
noted that this inviscid dissipation is identical to the dissipation of the viscosity solution in
the limit v — 0. In figure 3, we show results for both the kinetic energy and the dissipation
rate for a sequence of mesh refinement levels of [ = 2, ..., 5 with degree k = 3, resulting
in effective resolutions of 16', ..., 128!. For increasing spatial resolution, the numerical
results converge to the analytical profiles. It can be seen that achieving grid-convergence
for the dissipation rate requires higher spatial resolutions than for the temporal evolution
of the kinetic energy itself. This is expected since the dissipation rate contains a temporal
derivative that results in higher sensitivity to deviations (here numerical discretisation
error) from the exact solution.

Figure 4 shows the same results for the problem with sine function as initial condition.
We observe that the onset of energy dissipation is smooth, as opposed to the case of the
hat function, where the kinetic energy exhibits a kink and the dissipation rate a jump at
the time of the singularity. In other words, the occurrence of a finite-time singularity does
not imply an instantaneous onset of dissipation. We keep this in mind when considering
the three-dimensional inviscid Taylor—Green problem, which is a problem that also starts
from sine-like initial data.
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Figure 4. One-dimensional inviscid Burgers equations with sine function as initial condition: temporal
evolution of kinetic energy (a) as well as dissipation rate () and mesh refinement study with refinement

levels I =2, ..., 5 and polynomial degree k = 3, resulting in effective resolutions of 16', ..., 128!,

The point that we want to make with this example is that a discretisation scheme that
involves purely numerical mechanisms of dissipation can provide the physically correct
amount of dissipation for a sufficiently fine spatial resolution; see also the discussion in
the introduction. Note that this is fundamentally different from viscosity solutions u" for
small v > 0, for which the required dissipation is realised by the additional viscous term
in the equations and for which the dissipation stemming from the numerical discretisation
scheme tends to zero if the mesh resolves the viscosity solution u” exhibiting steep
but finite gradients. Although the one-dimensional Burgers equation cannot reflect the
complexity of three-dimensional turbulent flows, these results provide confidence that
numerical discretisation schemes can also predict the solution in a physically correct way
for the higher-dimensional problems studied below.

3.3. Two-dimensional shear layer problem

We consider the two-dimensional shear layer roll-up problem (Brown 1995) where the
initial velocity is given as

u(x,t = 0) = (tanh (p(0.25 — |x2 — 0.5])), § sin (2nx1))T. 3.9

Following Brown (1995), we set the two parameters p,8 to p =30 and § = 0.05.
The problem is solved on the domain §2 = [0, 1]> with periodic boundaries in both
directions. In the following, different viscous simulations with viscosities v = 2.5 x
1073, 1073, 10~* are considered, as well as the inviscid limit with v = 0. The mesh is
uniform Cartesian with (2/)? elements for refinement level /, and the polynomial degree
of the shape functions is k = 7, resulting in the effective resolution of ((k + 1)2H2.
The simulations are run for the time interval 0 <t < 4. The time step size is adapted
dynamically with a Courant number of Cr = 0.25.

The aim of this example is to verify the robustness and accuracy of the present
high-order DG discretisation for a simple two-dimensional example. As mentioned in
the introduction, the energy is conserved for the two-dimensional incompressible Euler
equations, and this property should be preserved by a consistent discretisation scheme for
sufficiently fine spatial resolutions. Figure 5 shows contour plots of velocity magnitude and
vorticity magnitude at time = 1.2 for a mesh with 16> elements (refinement level [ = 4)
for different values of the viscosity. In figure 6, we show the temporal evolution of the
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Figure 5. Two-dimensional shear layer roll-up problem: contour plots of velocity magnitude and vorticity
magnitude at time # = 1.2 for four different values of the viscosity (blue indicates low value and red high
value). The results shown correspond to a mesh with 162 elements with a polynomial degree of k = 7 (effective
resolution 1282). (a) Velocity magnitude for v = 2.5 x 1073, 1073, 107%, 0 (from left to right). (b) Vorticity
magnitude for v = 2.5 x 1073,1073,107%,0 (from left to right).

kinetic energy and the kinetic energy dissipation rate for the different viscosity values.
For each viscosity, results obtained on three meshes of increasing resolution with 42, 82
and 162 elements are shown. For large viscosities, v = 2.5 x 1073 and 1073, the results for
the temporal evolution of the kinetic energy and dissipation rate coincide for all meshes.
For the smallest viscosity of v = 10~# and the inviscid limit v = 0, the results obtained on
the two finest meshes coincide, and only minor deviations can be observed for the coarsest
mesh. This is in qualitative agreement with the contour plots for the velocity magnitude
in figure 5, which demonstrate that the velocity field is smooth and well resolved on the
finest mesh for all viscosities. The resolution requirements are higher for the vorticity
containing spatial derivatives of the velocity field. As already noted in Brown (1995), the
vorticity field is still not well resolved even if convergence has already been achieved for
the velocity or kinetic energy. It can be seen from figure 5 that the vorticity field is well
resolved for the viscous cases v = 2.5 x 1073, 1073, 10—, but shows grid-dependence
with numerical artefacts in the form of elevations of the vorticity at the element corners,
especially in the thin shear layer, which is most difficult to resolve. In agreement with
what is expected physically, the kinetic energy dissipation rate tends to zero for v — 0,
and the kinetic energy is conserved in the inviscid limit v = 0. Of particular importance
with respect to the interpretation of results shown in § 3.4 for the three-dimensional
Taylor—Green problem is the observation that the numerical dissipation occurring in the
inviscid limit v = 0 for coarse spatial resolutions decreases to zero under mesh refinement
for this two-dimensional problem.

An important aspect concerns the numerical robustness of the discretisation scheme. In
Chalmers et al. (2019), instabilities are reported for the same shear layer problem with
viscosity v = 0 for a DG discretisation with polynomial degree k = 7 and refinement
level [ = 4. This originates from the fact that the stabilised discretisation techniques
developed in Krank et al. (2017) and Fehn et al. (2018b) that render the discretisation
robust in under-resolved scenarios and that are used in the present work are not
applied in Chalmers et al. (2019). No robustness problems have been observed for
the present discretisation scheme, even for the coarsest resolutions, e.g. refinement
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Figure 6. Two-dimensional shear layer roll-up problem: temporal evolution of kinetic energy (a) and kinetic
energy dissipation rate (b) for decreasing viscosity values of v = 2.5 x 1073, 1073, 10~#, 0. For each viscosity,

results are shown for effective resolutions of 322 (dotted lines), 642 (dashed lines) and 1282 (solid lines),
corresponding to meshes with 42, 82 and 162 elements with polynomial degree k = 7.

levels of /=0,1 not shown explicitly here. This is a prerequisite for obtaining a
feasible incompressible flow solver for three-dimensional turbulent flow problems that
are even more challenging in terms of the stability of a numerical discretisation scheme.
Instabilities have also been reported for continuous spectral element discretisations for
this two-dimensional shear layer problem, where filtering techniques can be used to
recover stability (Fischer & Mullen 2001), at the cost of introducing new parameters
into the discretisation scheme. A recent study by Thalabard, Bec & Mailybaev (2020)
uses a pseudo-spectral scheme with hyperviscous linear dissipation to investigate a
two-dimensional Kelvin—Helmholtz problem. A discretisation technique with properties
similar to the present stabilised DG discretisation in terms of robustness and accuracy
are exactly divergence-free H(div)-conforming discretisations; see for example the studies
by Guzmdn, Shu & Sequeira (2016) and Fu (2019) analysing this shear-layer problem,
the study by Schroeder & Lube (2018) discussing other two-dimensional examples,
such as the Kelvin—Helmholtz instability problem, and the study by Fehn et al. (2019)
comparing H(div)- and stabilised L?-conforming discretisations for three-dimensional
turbulent flow problems in under-resolved scenarios.

3.4. Three-dimensional Taylor—Green vortex problem

We consider the three-dimensional Taylor—Green vortex problem (Taylor & Green 1937)
defined by the following initial velocity field:

u(x,t = 0) = (sinx cOS Xy COS X3, — COS X[ Sin X» COS X3, 0)T . (3.10)

Results of viscous simulations for increasing Reynolds number Re = 1/v are given in
figure 1. In the following, the focus is entirely on the inviscid limit v = 0. The simulations
are run over the time interval 0 <7 < T = 20 to cover the different flow regimes of
laminar flow, transition to turbulence and decaying turbulence. To reduce computational
costs for fixed resolution of the flow (or to increase the effective resolution for a given
computational cost), it is common practise to exploit the symmetry of the Taylor—-Green

problem and simulate the flow on the impermeable box £2 = [0, ] with symmetry
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boundary conditions on all boundaries (Brachet ef al. 1983), i.e.
ou

on

as opposed to the periodic box §2 = [—, 7]’ that is also used in computational studies.
This optimisation allows us to reduce computational costs by a factor of 8 for the present
DG discretisation. Further symmetries can be exploited by spectral methods leading to the
so-called fundamental box (Brachet ef al. 1983; Kida 1985).

The computational domain £2 = [0, 7t]? is discretised using a uniform Cartesian grid
consisting of (2h4 elements, where [ denotes the level of refinement. The number of
unknowns is given as Npors = )% (d(k, + D + (k, + D) = @H4(d(k + D + k9). Tt
is common practise in the literature to express the effective mesh resolution in terms of
the periodic box to obtain comparability between different discretisation techniques that
exploit different levels of symmetry. Hence, we define the effective spatial resolution
as Mk + 1))4; e.g. the effective resolution is 643 for refinement level / = 3 and

polynomial degree k = 3. Absolute tolerances of 102 and relative tolerances of 107°
are used for the iterative linear solvers, where relative tolerance means that the residual
is reduced by a factor of 107% compared to the initial residual that uses as initial guess
a high-order extrapolation of the solution from previous time steps. The polynomial
degree used for the Taylor—Green vortex simulations is k = 3, and adaptive time stepping
with Cr = 0.25 is used for all simulations. The penalty factors of the divergence and
continuity penalty terms are chosen as defined in Fehn et al. (2018b), except for the
finest resolution of 8192%, where the penalty factors have been increased by a factor
of ¢ =2 compared to the standard definition. For this fine resolution, the simulation
also remained stable for the default value of ¢ = 1, but we observed oscillations in the
maximum vorticity at early times, giving an indication of the need for a slightly larger
penalisation of the divergence-free constraint and normal continuity of the velocity field.
Since these oscillations disappeared when increasing the penalty factors by a factor of 2,
this value was ultimately used for this highest-resolution simulation. The highest resolution
of 81923 has Npyrs = 2.35 x 10! unknown degrees of freedom, and 2.27 x 107 time
steps were solved during this simulation. The computations were performed on a large
supercomputer using almost 100 k cores for the highest resolution, requiring a run time of
approximately 8.4 days.

u-n=0, (3.11a,b)

3.4.1. Recapitulating the state of the art

This section briefly summarises the type of discretisation, the maximal effective
resolutions and the final time 7 of the simulations considered in previous numerical
studies for the three-dimensional inviscid Taylor—Green vortex problem. In Brachet et al.
(1983), a spectral method with maximum resolution of 2563 (exploiting symmetry) was
used, and direct simulation was performed up to times # < 4. In a subsequent work by
Brachet et al. (1992), a maximum resolution of 864> (exploiting symmetry) was reached,
and again direct simulation was performed up to times ¢ < 4. A comparison of a spectral
method and a weighted essentially non-oscillatory (WENO) finite difference method can
be found in Shu ef al. (2005), where a maximum resolution of 368> (exploiting symmetry)
and simulation up to times ¢ < 6 is considered. A modal DG method was studied in
Chapelier et al. (2012), with the simulations performed up to times ¢ &~ 5-7, until they
became unstable, with the maximum resolution of around 96> for polynomial degrees
from k =1 to k = 5. DG discretisations used to study the inviscid Taylor—-Green vortex
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Figure 7. Three-dimensional inviscid Taylor—Green problem: contour plots of velocity magnitude and vorticity
magnitude (blue indicates low value and red high value) on plane x = m of impermeable box. The results
shown correspond to a mesh with 323 elements with a polynomial degree of k = 3 for the shape functions

(effective resolution 256°). (a) Velocity magnitude on plane x = 7 at times ¢ = 0, 1, 2, 3, 4 (from left to right).
(b) Vorticity magnitude on plane x = w at times t = 0, 1, 2, 3, 4 (from left to right).

problem have also been analysed in Moura et al. (2017a,b), Fernandez, Nguyen & Peraire
(2018), Manzanero et al. (2020) and Schroeder (2019), but with a focus on large eddy
simulation (LES) modelling. The study by Cichowlas & Brachet (2005) used a spectral
method with maximum resolution of 20483, with simulations performed up to times ¢ < 4.
The highest resolution of 4096 was achieved by Bustamante & Brachet (2012) using a
spectral method, and the simulations were performed up to times ¢ < 4.

In these works, indications of finite-time singularities are mentioned. In Morf et al.
(1980), t. = 5.2 is obtained from power series expansions. A more accurate variant
using power series expansions presented in Brachet ef al. (1983) leads to ¢, = 4.4 +0.2.
Furthermore, the study by Brachet et al. (1983) reports indirect evidence for a finite-time
singularity according to the direct numerical simulation results, but the authors conclude
that the resolution of 2563 is not sufficient to investigate the occurrence of finite-time
singularities for times ¢ > 4. The more recent study by Bustamante & Brachet (2012)
estimates a blowup time of 7, & 4 and concludes that the results are not inconsistent with
the occurrence of a singularity. The work of Larios et al. (2018) obtains a blowup time
of t, & 4.2, similar to the blowup time in Brachet et al. (1983).

3.4.2. Results in physical space
The early stage of the Taylor—Green vortex evolution with the formation of thin flow
structures is visualised in figure 7. Similar results are shown and discussed in detail in

Brachet et al. (1983), for the same effective resolution of 256°, using a spectral method. In
agreement with the above results for the two-dimensional shear layer problem, we observe
that the velocity field is resolved at all times, while under-resolution effects are clearly
visible in the contour plots of the vorticity magnitude at later times t = 3 and ¢t = 4 for
the chosen resolution. A high-resolution visualisation of the thin vortex sheet shown in
figure 7 with a volume rendering of the vorticity magnitude is shown in Bustamante &

Brachet (2012) for an effective resolution of 4096°. Figure 8 shows visualisation results for
a high-resolution simulation (effective resolution 20483) at later timest =4,5,6,7,8,9,
around which small-scale features occur and transition to turbulence takes place.
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Figure 8. Three-dimensional inviscid Taylor—Green problem: isosurfaces of Q-criterion at times ¢ =
4,5,6,7,8,9, where the blue surface corresponds to a value of —0.5 and the orange surface to a value
of 0.5. The results correspond to a mesh with 256> elements with a polynomial degree of k = 3 for the shape

functions (effective resolution 20483). Results are shown for (a) r = 4; (b)) t = 5; () t = 6; (d) t = T; (e) t = 8;
(Hr=09.
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These results illustrate that the present discretisation scheme does not lead to
thermalisation, which appears to be a prerequisite for obtaining physically meaningful
results; compare for example the present results to the thermalised results shown in
Schroeder (2019, figure 9.14). Flow visualisation is discussed in the literature as one
possibility for tracing finite-time singularities, but appears to be impractical due to the
difficulties in handling large data sets for high-resolution simulations necessary for such
investigations, as well as the difficulties in visualising singularities (which do not show up
as singularities for a finite-resolution numerical simulation). Hence, our attention is turned
to other techniques in the following.

We present numerical results of a mesh convergence study for refinement levels [ =
3,...,10 and polynomial degree k = 3. Figure 9 shows the temporal evolution of the
kinetic energy and the kinetic energy dissipation rate. At small times ¢, the energy is
constant and the energy dissipation rate is zero. This agrees with the expected theoretical
behaviour stating energy conservation as long as the solution remains smooth and has
also been shown in previous works in a similar way. In this work, we do not want to
terminate the simulations once we expect them to become under-resolved, but instead
continue the simulations until ¢ = 20. Depending on the effective mesh resolution, an
onset of energy dissipation can be observed that shifts towards later times for increasing
spatial resolution. However, this time of onset of dissipation does not seem to be pushed
beyond t &~ 5 even for the finest spatial resolutions. This is illustrated more clearly in
figure 10, which plots the kinetic energy dissipation rate in logarithmic scaling as well
as the error against the fine-resolution simulation (ref). The fact that the dissipation rate
of the simulations with resolutions of 2048% and 4096° ‘converges’ to that of the finest

resolution at a time 7 &~ 5 for 20483 and r < 5 for 4096 is consistent with a potential
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Figure 9. Three-dimensional inviscid Taylor—Green problem: temporal evolution of kinetic energy (a) and
kinetic energy dissipation rate (b) for increasing effective spatial resolution.

(a) 102 (b)_ 102 ¢+
3
2
\% ;:
5 Egk . 5 ATV
= 10 104 L & il ML e Jr 64 1
%’ * { il H|1 I
o 1l HRRENE -—--256
= i 751233E
ol |
I 1024
106 -L? o6/ /i I ~--20483
- P } ---40963
A ETI 1411 i [ 11
0 5 10 15 20 0 5 10 15 20
t t

Figure 10. Three-dimensional inviscid Taylor—Green problem: temporal evolution of kinetic energy
dissipation rate in logarithmic scaling (a) and error against fine-resolution simulation (b).

blowup time t, < 5, in our opinion. Overall, we make the interesting phenomenological
observation that the kinetic energy evolution and its dissipation rate tend to converge to a
dissipative solution rather than an energy-conserving solution with vanishing dissipation
rate. As in high-Reynolds-number viscous simulations of this problem, the kinetic energy
dissipation rate reaches a maximum at ¢ = 89 and decreases afterwards. In §3.4.5,
grid-convergence of the sequence of discrete solutions to a dissipative reference solution is
investigated in more detail. Note that the present results for the dissipation rate agree well
with those of Cichowlas et al. (2005) for an energy-conserving scheme, where an effective
dissipation rate is deduced from the thermalised energy Ey,(7), the energy associated with
the small scales with wavenumber k > kg, where kg, is the wavenumber at which the
energy spectrum exhibits a local minimum.

It is now examined whether this behaviour is consistent with the temporal evolution
of the maximum vorticity and the enstrophy shown in figure 11. For both quantities,
one can immediately identify three phases: (i) a first phase up to approximately ¢ &~ 3
in which the flow is well resolved for all spatial resolutions, so that the results essentially
overlap for all simulations, (ii) an intermediate phase 3 < ¢ < 5 in which the different
simulations start to deviate from each other, due to under-resolution effects depending
on the spatial resolution of each simulation, and (iii) a final phase ¢ > 5 in which the
results of all simulations deviate substantially, due to the different resolution capabilities
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Figure 11. Three-dimensional inviscid Taylor—Green problem: temporal evolution of maximum vorticity (a)
and enstrophy (b) for increasing effective spatial resolution.

of the simulations. In the first phase, the vorticity first decreases, reaches a minimum
and then begins to grow exponentially, in agreement with the results in Bustamante &

Brachet (2012, figure 1()). In figure 11, we have added a reference curve with exp(%t)
growth which describes the growth of the maximum vorticity very well in this regime. In
the second phase, at around 7 &~ 3.5, the maximum vorticity begins to grow substantially
faster, and the growth of vorticity essentially depends on the spatial resolution, which
is directly linked to the maximum velocity gradient that can be represented on a given
mesh. As already mentioned in the introduction, for every simulation that does not blow
up due to numerical instabilities of a discretisation scheme, the maximum vorticity will
remain finite no matter how fine the spatial resolution is. Therefore, the occurrence of
a finite-time singularity with lim,,,, ||®|lcc = 00 remains speculative. While our results
might be considered consistent with such a vorticity blowup scenario, we are not able to
identify a concrete blowup time ¢ = #, from the present results. We instead observe that
the time of maximum vorticity observed in this second phase is shifted to later times for
the finest spatial resolutions as well. At the same time, one might argue that a finite-time
blowup at a time ¢ = ¢, with ¢, ~ 4-5 would produce results similar to those shown here,
with the maximum vorticity following the exact profile until the curve of a specific spatial
resolution branches off due to under-resolution of the simulation. In such a scenario, one
would expect the maximum vorticity to grow by a factor of 2 for refinement level / — [ 4 1
due to the mesh size being reduced by a factor of 2, allowing numerical gradients to
become twice as large. While we observe such an increase in maximum vorticity from
one refinement level to the next, it is not clear whether this suspected blowup would
happen in finite time. In the third phase, the maximum vorticity reaches a global maximum
between t = 6 and t = 7 for each resolution before it starts to decrease slowly. In this phase,
the maximum vorticity is offset by a factor of approximately 2 from one refinement level
to the next. This is a clear indication that none of the simulations is able to resolve the
finest structures, and it is plausible that a factor of 2 in mesh size also gives a factor of 2 in
maximum vorticity. Finally, the maximum vorticity shows strongly fluctuating behaviour
in the third phase. Note that the maximum vorticity is determined numerically by taking
the maximum over all quadrature points, i.e. the vorticity field is sampled in discrete
points. This effect is negligible for well-resolved scenarios but might explain oscillatory
behaviour in case a local maximum travels through the domain.
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The temporal evolution of the enstrophy is overall similar to that of the maximum
vorticity. An important difference is that the enstrophy does not reach a local minimum
at early times as observed for the maximum vorticity. In the second phase, the growth of
the enstrophy is more moderate than that of the maximum vorticity. In the third phase,
the enstrophy curves can be described essentially as smoothed variants of the maximum
vorticity from which the high-frequency content has been removed. A possible explanation
for the enstrophy behaviour in the second and third phases is that the enstrophy is not a
local quantity, but an average in space over the computational domain. Again, a growth in
enstrophy by a factor of two from one mesh level to the next is observed at later times,
which is consistent with an enstrophy evolution theoretically taking infinite values, or
taking values that are finite but much larger than those obtained numerically in figure 11.
Considering Onsager’s conjecture as valid, it is clear that one cannot expect convergence
for the temporal evolution of maximum vorticity and enstrophy. Theoretically, convergence
can then only be expected for the kinetic energy evolution and to some extent for kinetic
energy spectra up to the resolution limits of the discretisation scheme, as discussed in the
following.

3.4.3. Results in spectral space

Figure 12 shows kinetic energy spectra for increasing spatial resolution at various instants
of time, namely at t = 1,...,9 in steps of width 1. Results are shown for resolutions
of 1283 to 2048>. The high computational costs and memory requirements of the fast
Fourier transformation part of our simulations prevented the spectral analysis for the

highest resolutions of 4096> and 81923. For a discussion of the general behaviour of
energy spectra as a function of time at early times ¢ < 4, we refer to Brachet ef al. (1983),
Cichowlas & Brachet (2005) and Bustamante & Brachet (2012), where it is shown how the
energy spectra can be fitted to functions of the form E(k,t) = C (k0 exp(—2ké(1)),
and where values obtained for n(#) and 6(¢) are discussed in detail. To verify the present
results, we include reference curves of slope n =3 (blowup of enstrophy) and n =
5/3 (Kolmogorov’s inertial scaling law) or n = 7/3 (motivated by results obtained
in Piatkowski (2019) for viscous Taylor—-Green simulations). The energy spectra are
compared against the slope n = 3 as a means of investigating the plausibility of potentially
singular behaviour and to identify a time ¢t = t, at which such a blowup could occur, as
motivated in § 3.1. Once the flow has transitioned to a fully turbulent state, the energy
spectrum can be expected to exhibit some form of Kolmogorov scaling. For this purpose,
we consider the energy spectra at times t = 8 and r = 9, where the maximum dissipation
rate occurs, even though the flow might not be fully homogeneous isotropic at those times,

and the results might deviate from Kolmogorov’s k~>/3 scaling. To quantify the resolution
capabilities of the present discretisation, we also plot the Nyquist wavenumber Knyguist,
as well as the wavenumber ki ¢, according to the 1 % rule of Moura et al. (2017b), which
aims to obtain an accurate resolution limit for upwind-like DG discretisations for a specific
polynomial degree of the function space.

Figure 12 shows that the range of scales resolved by the numerical method increases
with increasing spatial resolution as expected theoretically, and that the resolution limit
for polynomial degree 3 is described very well by the 1% rule corresponding to this
degree. The energy spectra reach a slope of —3 between t =4 and ¢t =5, making
our results consistent with the occurrence of singular behaviour around that time (4 <
tx < 5), in agreement with the rapid growth of the maximum vorticity observed in
the same time interval; see figure 11. The spectra in the inertial range show a decay
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Figure 12. Three-dimensional inviscid Taylor—Green problem: kinetic energy spectra for effective resolutions
of 1283, 2563, 5123 attimes r = 1,2, ..., 9. (a) Effective resolution of 128>. (b) Effective resolution of 2563.

(¢) Effective resolution of 5123.

slightly stronger than k=/3, and better agreement is achieved when they are compared

to the k~7/3 scaling that is also shown in figure 12. This behaviour has already been
observed in Piatkowski (2019) for viscous Taylor—Green vortex simulations, where it was
found that Kolmogorov’s k—>/3 scaling can only be observed at later times, e.g. f & 20.
Regarding the inertial scaling, the present results are therefore in agreement with results
in the literature. Towards the Nyquist wavenumber, a moderate pile-up of energy can be
observed by comparison against the —5/3 and —7/3 references slopes before the energy
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Figure 12. Three-dimensional inviscid Taylor—Green problem: kinetic energy spectra for effective resolutions
of 10243,20483 at times t = 1,2, ..., 9. (d) Effective resolution of 10243. (e) Effective resolution of 20483.

falls off very rapidly. The energy pile-up is characteristic of this type of high-order
DG approach and becomes stronger for higher polynomial degrees; see Moura et al.
(2017a,b) and references therein. This particular behaviour is often the primary target
when optimising discretisation schemes; see for example the recent studies by Flad &
Gassner (2017), Winters et al. (2018) and Manzanero et al. (2020) and references therein,
which suggest counteracting this energy bump behaviour with explicit subgrid scale
modelling. However, the recent study by Fernandez ef al. (2018) shows that this topic is
delicate, and improvements in some quantities through the use of explicit subgrid models
cause deviations in other quantities, such as the temporal evolution of the kinetic energy
dissipation rate. In our opinion, the challenge lies in improving the spectral behaviour
and at the same time not giving up the improved resolution capabilities (per degrees
of freedom) of high-order discretisations. The overall goal can be formulated as the
achievement of a discretisation method that is accurate with respect to both the spectral
behaviour and the behaviour in physical space, e.g. the temporal evolution of the kinetic
energy and its dissipation rate. We want to note that from such a holistic viewpoint it is
not clear a priori whether an explicit subgrid scale model optimising the energy spectrum
according to the inertial k=>/3 law is advantageous overall. We take up this point again
in § 4, where we discuss possible directions of future research. The energy spectra shown
in Schroeder (2019, figure 9.15) for an exactly energy-conserving discretisation scheme
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Figure 13. Three-dimensional inviscid Taylor—Green problem: variation of penalty factor ¢ and its influence
on the temporal evolution of the kinetic energy (a) and the kinetic energy dissipation rate (b) for an effective

resolution of 10243.

illustrate that such a scheme leads to physical inconsistencies for the E(k) curves in the
inertial range.

3.4.4. Does the numerical dissipation have artificial or predictive character?

The dissipation of kinetic energy observed for the inviscid Taylor—Green simulations
originates from the numerical method. At first sight, one might argue that changing the
discretisation scheme by choosing another numerical flux or varying certain parameters
would lead to more or less dissipative results, i.e. that the amount of dissipation is
artificial and is determined by the discretisation parameters. The results of the mesh
convergence study shown above do not support this point of view, and we want to provide
further results that might allow insight into the predictive character of these dissipative
numerical solutions. In this context, it is illustrative to study the temporal evolution of the
kinetic energy and its dissipation rate under a variation of parameters of the discretisation
scheme. Figure 13 shows a parameter study of the penalty factor ¢ of the divergence and
continuity penalty terms of the present discretisation, considering values of ¢ =1, 2,4, 8
for the example of the 10243 spatial resolution. Note that this parameter is the crucial
one in stabilising the method in the under-resolved and high-Reynolds regime (Fehn et al.
2018b, 2019). We observe that both the overall amount of dissipation and the dissipation
maximum are essentially unaltered by variation of this parameter. It is worth noting that the
time of onset of dissipation is also not affected by the value of ¢. This might have important
implications. Assuming that a non-dissipative (energy-conserving) solution is the correct
physical behaviour and that the numerical dissipation is artificial, one might expect an
increase of the penalty parameter to affect the numerical solution more strongly, e.g. to
change the amount of overall dissipation, or to lead to a delayed onset of dissipation due to
better fulfilment of the divergence-free constraint. As we do not observe such behaviour,
in our opinion these results are an indication that the obtained dissipative solutions have
a predictive character. It is clear that we cannot expect the results to be identical for
different penalty factors, since the results are not grid-converged for the chosen resolution

of 10243, meaning that the discretisation scheme and its parameters affect the numerical
solution.
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3.4.5. Are the results grid-converged?

We finally address the question of whether and to what extent the results presented for
inviscid Taylor—Green simulations can be considered grid-converged. For this purpose,
we compute relative L%-errors for the kinetic energy evolution and the kinetic energy
dissipation rate,

2 _
g = T v C@dE/dr =

T 2
/ (Erer(1)) dt / (M> dr
=0 =0 dt

Since no analytical solution is available, the errors are measured using the finest resolution
of 81923 as a reference (ref). This implies that we cannot compute the error for the 81923
resolution. The error of this simulation can only be roughly estimated by extrapolating the
convergence trend observed for the coarser resolutions and assuming that this convergence
behaviour continues for the finest resolution. Defining a simulation with a relative error
of 1% or less as grid-converged, we see from the results in figure 14 that we achieve
grid-convergence in the kinetic energy evolution, with errors below 1 %. For the second
finest resolution (the last data point in figure 14), the measured error is 0.27 %. For the
kinetic energy dissipation rate, the error is significantly larger, demonstrating that this
quantity is more sensitive, in agreement with what has been observed in figure 1. For the
second finest resolution, the measured error is 3.52 %. While the errors can be expected
to be smaller for the finest resolution of 81923 that is used as a reference solution here,
we conclude that even finer resolutions would be required to achieve grid-convergence
(in terms of the 1% error level) for the kinetic energy dissipation rate. Figure 14 also
shows linear least-squares fits (e.g. log(E) ~ alog(Npyrs) + b for the kinetic energy) to
the data obtained from the numerical experiments, where a mean convergence rate of
approximately #3/* is obtained for the kinetic energy and h'/? for the dissipation rate.
This result — seemingly providing numerical evidence of grid-convergence to a dissipative
solution of the three-dimensional incompressible Euler equations under Taylor—Green
initial conditions — is the main result of the present study. While one might conjecture that
this solution could be a weak Euler solution, there is currently no rigorous mathematical
theory guaranteeing convergence to a weak solution. Moreover, even if we in fact obtained
convergence to a weak Euler solution, it might not be the viscosity solution for v — 0.
Finally, the results in figure 14 cannot exclude the possibility that the dissipation rate
would (slowly) tend to zero in the limit 7 — O if finer spatial resolutions were realised.
Let us explain this decisive aspect in more detail. For a solution that is non-dissipative (i.e.
energy-conserving) from a physical perspective, one might argue that dissipation in the
numerical simulation can originate only from under-resolution and can be expected to tend
to zero when the resolution is increased. However, a dissipation rate decreasing extremely
slowly under mesh refinement, e.g. as 1/loglog(1/k), might then (erroneously) indicate
grid-convergence to a dissipative solution, but the true solution is energy-conserving.
Against this background, our numerical investigations according to the indirect approach
are consistent with or suggestive of finite-time singularities, but do not conclusively
provide evidence of finite-time singularities.
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Figure 14. Three-dimensional inviscid Taylor-Green problem: relative L>-errors of the temporal evolution of
the kinetic energy (a) and the kinetic energy dissipation rate (b) for effective resolutions ranging from 8>
t0 4096°.

4. Conclusion and outlook

Hunting for finite-time singularities in incompressible Euler flows is a challenging
discipline. Searching for singular behaviour in visualisations of three-dimensional
simulation results evokes the picture of finding a needle in a haystack, as it can be expected
that singularities are very localised and will never be resolved by a numerical scheme,
and the amount of data for large-scale three-dimensional simulations soon becomes
cumbersome. For this reason, most previous studies have focused on quantities such as
the maximum vorticity, the analyticity strip width, fitting energy spectra to power law
behaviour and related blowup criteria. The present work focuses on global quantities
such as the temporal evolution of the kinetic energy, avoiding geometrical complexities
in visualisation and striving for a clearer indication of singular behaviour, given that it
might be computationally less demanding to resolve the kinetic energy than the vorticity
in numerical simulations. We call this an indirect approach, since it exploits the connection
between singular behaviour and anomalous energy dissipation according to Onsager’s
conjecture. A decisive point is that this technique requires suitable discretisation schemes
that remain robust in the presence of singularities and provide mechanisms of dissipation
in case no viscous dissipation is present, which is a challenge in itself. Then, the idea is that
observing energy-dissipating behaviour for a sequence of mesh refinement levels provides
insight into the physical dissipation behaviour of the problem under investigation.

We apply this technique to one-, two- and three-dimensional problems, obtaining
results consistent with theory in one and two space dimensions. Subsequently, we
use the technique to study the complex three-dimensional inviscid Taylor—Green
problem, for which we observe energy-dissipating behaviour that is consistent with the
high-Reynolds-number limit of viscous simulations available in the literature. The present
study measures grid-convergence to a dissipative, fine-resolution numerical solution for
the three-dimensional inviscid Taylor—Green problem with a measured relative L2-error
of 0.27 % for the kinetic energy and 3.52 % for the kinetic energy dissipation rate. The
results for the temporal evolution of the kinetic energy may therefore be considered to
be grid-converged, and might serve as a reference solution for future studies. Regarding
the temporal evolution of the maximum vorticity and the enstrophy, we are able to
resolve an increase of almost four orders of magnitude for both quantities. To the best
of our knowledge, these are the highest-resolution results published to date for the
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three-dimensional inviscid Taylor—Green vortex problem. Confidence in the reliability of
the numerical results for this challenging three-dimensional problem is increased by the
circumstance that the numerical method applied here is a robust discretisation scheme that
remains numerically stable in the inviscid limit for all spatial resolutions that have been
investigated. This is an important prerequisite for drawing conclusions about a potential
physical blowup. In contrast, no conclusions can be drawn from a numerical simulation
that blows up in finite time, since the observed blowup is due to numerical instabilities. In
other words, a physical blowup does not imply a numerical blowup for a finite-resolution
numerical simulation.

In summary, this work wants to raise the questions of (i) to what extent these results
are related to weak dissipative solutions of the incompressible Euler equations, (ii)
to what extent these results can then be interpreted as a numerical confirmation of
the energy dissipation anomaly, and (iii) whether these results would imply finite-time
singularities according to Onsager’s conjecture. Let us emphasise that the present results
do not formally prove convergence of the discrete velocity fields u;, to a weak Euler
solution u. Even if convergence to a weak Euler solution had been obtained for a
subsequence h;, another subsequence 4 might converge to a different weak Euler solution.
Moreover, we cannot exclude the possibility that the observed ‘dissipation anomaly’ is
of numerical origin, in the sense that the spatial resolutions considered here might be
too coarse to adequately resolve an energy-conserving Euler solution. Nevertheless, the
present study might complement theoretical and experimental works on anomalous energy
dissipation and the related implications for finite-time singularities of three-dimensional
incompressible Euler flows according to Onsager’s conjecture. As part of future work,
the so-called 4/5th-law (Duchon & Robert 2000) should be investigated numerically
in order to substantiate the hypothesis of having found a dissipative anomaly. Finally,
the present work would gain further theoretical support from a proof of convergence to
generalised weak Euler solutions for DG discretisation schemes of the Euler equations in
the limit 4 — O (along subsequences).

Given the challenges of the proposed indirect approach, it appears to be natural to raise
the question of whether this technique has advantages over well-known direct techniques.
Let us share some ideas about why the indirect approach might be an attractive technique
for the exploration of finite-time singularities. A key motivation for the indirect approach
is that it might not be necessary to resolve the smallest scales of the flow in order to resolve
the temporal evolution of the kinetic energy. This is based on the observation that resolving
the vorticity field (direct approach) typically requires significantly finer resolutions than
resolving the kinetic energy (indirect approach). When studying singularities by the direct
approach, one needs to realise that it is impossible to resolve the smallest scales through
finite spatial resolutions. The vorticity will take finite values at all times for a stable
discretisation scheme, so that results of a single simulation do not serve as numerical
evidence of a finite-time singularity. (In this context, the term finite means that the quantity
of interest takes values much smaller than the ‘infinite’ value defined by the maximum
floating point number that can be represented on a computer.) A key element of the indirect
approach is a mesh refinement study where the quantities of interest (kinetic energy and
its dissipation rate) do not blow up. In our opinion, this circumstance supports cross-solver
validation very naturally. Assume for example that different spatial discretisation schemes
would converge to the same dissipative numerical solution (measured by some error
norms as done in the present work). A cross-solver validation of the kinetic energy
evolution or dissipation rate (indirect approach) might provide confidence that the obtained
dissipative behaviour is not artificial (why should entirely different PDE solvers produce
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the ‘same’ artificial result with artificial dissipation?). In contrast, it would be difficult
for each of these simulations to demonstrate a blowup of vorticity in order to provide
evidence of finite-time singularities by direct techniques. All these solvers might show an
increase in vorticity by a large factor, but it would still not be clear whether a finite-time
singularity |@|.o — 00 occurs. Of course, sufficient data are not available currently in
the literature to substantiate this assumption regarding a cross-solver validation of our
results. One line of study that we want to initiate with the present contribution is exactly
such a cross-solver validation, based on space-averaged results or other suitable statistical
results. In summary, the argument in favour of the indirect approach would then be a
clearer indication of finite-time singularities due to relaxed resolution requirements as
compared to the direct approach.

The applicability of high-order DG discretisations to large-scale problems in turbulence
research, for which spectral methods are currently the state of the art due to their accuracy
and computational efficiency, has been demonstrated. Finally, the present study gives
indications of what a promising large-eddy simulation strategy might be, and contributes
to the long-lasting and difficult discussion on explicit versus implicit subgrid scale
models. High-order discretisations that can be described as implicit LES have shown
very promising results for moderate-Reynolds-number flows, but it is often argued that
such techniques can ultimately be expected to need explicit subgrid scale modelling once
they are applied in the limit Re — oo. The present work contributes to this discussion by
investigating a high-order DG discretisation without an explicit model in the inviscid limit.
Assuming that such an implicit approach gives physical results in the inviscid limit, e.g.
consistent with Onsager’s conjecture on anomalous energy dissipation, this makes one
more confident that such a method will naturally be able to account for more complex
physical mechanisms in turbulence beyond K41 theory (Dubrulle 2019). Taking as an
alternative an energy-conserving numerical method with explicit subgrid scale model, the
anomalous energy dissipation has to be realised by the subgrid model. We therefore believe
that an interesting future research direction would be to take the results shown in the
present study for the inviscid Taylor—Green problem as a reference for further validation,
or to perform comparative studies between explicit and implicit LES techniques for the
highest-Reynolds-number case, the inviscid limit.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.1003.
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